
892 DIFFUSE S C A T T E R I N G  FROM 2 , 3 - D I C H L O R O - 6 , 7 - D I M E T H Y L A N T H R A C E N E  

International Tables for X-ray Crystallography (1974). Vol. IV. 
Birmingham: Kynoch Press. 

JONES, R. D. G. & WELBERRV, T. R. (1980). Acta Cryst. B36, 
852-857. 

WELBERRY, T. R. (1983). J. Appl. Cryst. 16, 192-197. 

WELBERRY, T. R. & JONES, R. D. G. (1980). J. Appl. Cryst. 13, 
244-25 I. 

WELBERRY, T. R., JONES, R. D. G. & EPSTEIN, J. (1982). Acta 
Cryst. B38, 1518-1525. 

WELBERRY, T. R., JONES, R. D. G. & PUZA, M. (1983). Acta Cryst. 
C39, 1123-1127. 

Acta Cryst. (1983). A39, 892-896 

Statistical Geometry. II. Numerical Solution via the Single Pixel Equation 

BY STEPHEN W. WmKINS 

CSIR O, Division of  Chemical Physics, PO Box 160, Clayton, Victoria, Australia 3168 

(Received 13 September 1982; accepted 1 July 1983) 

Abstract 

A simple single pixel equation (SPE) is presented 
which, when solved self-consistently for each pixel, can 
yield exact solutions to the statistical inversion problem 
for diffraction data outlined in paper I of this series 
[Wilkins, Varghese & Lehmann (1983). Acta Cryst. 
A39, 47-60].  The SPE approach was used to obtain 
the results presented in I and is shown here to have 
both practical and heuristic advantages in that it: (i) 
provides a very transparent approach to the task of 
solving the fundamental equations of the statistical 
geometric problem, (ii) can greatly improve the rate of 
convergence and (iii) readily allows the convexity of the 
constraint contributions to be monitored and, if desired, 
controlled. For the important case of 'phase refinement' 
via constraint (1) of I and the assumption of: (i) a 
complete data set of E k up to the resolution limit of the 
data and (ii) uniform errors (i.e. trk.~ = tr), it is shown 
that the maximum-entropy structure (MES)  can be 
fully refined via the SPE in only one Fourier transform 
cycle, and so should be extremely efficient for biological 
macromolecules. 

1. Introduction 

In the first paper in this series (Wilkins, Varghese & 
Lehmann, 1983, hereafter termed I), we laid the 
foundations for an information-theory-based approach, 
termed statistical geometry (SG), to the crystal- 
lographic inversion problem and presented (see also 
Gull & Daniell, 1978) a set of N coupled non-linear 
equations (eqs. I. 14a) for the discrete distribution, p, of 
scattering density in the unit cell. If the SG method of 
structure determination and refinement is to be made a 
practical tool applicable to biological macromolecules, 
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then highly effÉcient methods of solving these equations 
must be developed (cf, e.g., Gull & Daniell, 1978; 
Collins, 1982). This paper and the following one in the 
series (Wilkins, 1983) are both directed to that end. 

In the present paper we develop and discuss a new 
approach to the exact numerical solution of these 
non-linear equations which proceeds via a single pixel 
approximation (SPA) and in many ways resembles the 
mean-field-type of approximations often encountered in 
quantum mechanics and statistical mechanics. Because 
of its simplicity, such an approach offers both heuristic 
and practical advantages (e.g., improved convergence 
properties) although it need not necessarily lead to a 
solution. For a very important special case, namely that 
of 'phase  refinement' using constraint (1) of I alone and 
some other typically reasonable assumptions (see § 4) 
it is shown that the structure can be fully refined 
(within the SG framework) via the SPE in only one 
Fourier transform cycle, and so offers an extremely 
efficient approach to structure refinement even for 
biological macromolecules. 

2. The single pixel approximation (SPA) 

Following the notation and definitions introduced in I 
and starting from equations (I.14) we may Taylor 
expand the exponent there to first order in pj about an 
arbitrary trial structure, pt = pt0), and write 

p j=  exp - 2  o-~ . .  fj,to~ + ~ (pj, ~J' ,'J'J ~J j, 

for j =  1 . . . . .  N, (1) 

where 2 0 is the Lagrange multiplier associated with the 
normalization constraint (termed the structural 
freedom in I) and ~ the Lagrange multiplier vector 
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associated with the constraint-function vector, f(p). 
Notation for derivatives of fw.r.t. P1 is as given in (I. 17) 
so that, for example, ~,z,(0~ denotes the second deriva- .j,j 
tive of f w.r.t, pj and pj, evaluated at #0). Explicit 
expressions for constraint derivatives are given in Table 
1 of I for the particular constraints discussed there. It 
may be noted that equations (1) are in fact exact for 
constraints (1) and (3) in Table 1 of I, since all higher 
constraint-function derivatives (i.e. for v > 2) are zero. 

At this point, however, we introduce an approxi- 
mation in order to proceed; namely we include only the 
case j '  = j in the summation on the r.h.s, of (1) and 
write 

In p.,, + [).. f~(pt) ]pj  + [2. f )(pt)_ptyA.f~(pt)  + ;to] 

= 0 ,  for j =  I , . . . ,N .  (2) 

Equations (2) are a self-consistent set of equations for 
each pj alone in terms of the state pt and /I0- The 
coupling between different pj only occurs via the 
self-consistently determined field ;t0. Thus equations (2) 
resemble self-consistent mean-field approximations in 
statistical mechanics, such as the Curie-Weiss approxi- 
mation for ferromagnetism or, in quantum mechanics, 
such as the Hartree-Fock approximation for a many- 
fermion system. In the magnetic context, ;t o resembles 
an externally applied magnetic field and pt the 
'frozen-in' configuration of spins. The appropriate value 
of ;to in (2) is the one which normalizes p. For each pt 
and ~, one may seek to solve the single pixel 
approximation (SPA) given by (2) for p, which we shall 
call pSPA(~;pt). Self-consistent solution of the SPA 
approximation occurs when pSPk = pt, in which case 
both the Taylor expansion approximation involved in 
going from (I.14) to (1) and the approximation 
involved in going from (1) to (2) become exact and 
PSPA('I-) = P0.), SO that a full self-consistent solution to 
the statistical geometrical problem has been reached. 

It may be noted that the simple iterative procedure 
(see, e.g., Gull & Daniell, 1978) is equivalent to solving 
(2) iteratively without the terms involving f~(pt). For 
positive A. f~(pt), these additional terms tend to restore 
the iterate toward the trial structure, pt. Also, it may be 
noted that the SPA keeps the full non-linearity of the 
entropy (Skilling, private communication). 

2.1. Properties of  the single pixel equation 

Mathematically, equation (2) is of the general form 

lnpj + Ujpj + Vj=0 ,  (3) 

where Uj and Vj depend on pt, 2 and 2 o but not on p, 
and are readily obtained by equating coefficients 
between (2) and (3). This is a transcendental equation 
having 1, 2 or 0 real solutions for pj, depending on the 
values of U i and Vj (see Appendix 1 and Fig. 1). A 
sufficient condition for (3) to have one and only one 
solution is that 

U j :  A. f~(p t) > 0, (4a) 

which corresponds to the assumption that the sum of 
constraint contributions to the single sitej is convex. By 
comparison, in § 2.3 of I it was pointed out that a 
sufficient condition to guarantee a unique solution for 
p(2) was that )..f(p) be convex. Since (4a) is a 
necessary but not sufficient condition for the convexity 
of Q(q), it follows that the SPA will lead to unique 
solutions for p(2) whenever unique solutions exist, 
although it will also lead to unique solutions even when 
multiple solutions exist. Because of the simple form of 
the SPA, it is easy to monitor the occurrence of 
non-uniqueness in solutions and to overcome the 
problem if necessary (see § 3). For 

- e x p { V j -  1} _< Uj=A.f2(p  t) < 0, (4b) 

(3) has two solutions with the lower branch (see 
Fig. 1) for P1 clearly being the more physical one. While 
for Uj outside the ranges of (4a) and (4b), no solution 
to (3) exists. 

It should be noted that practical determination of 
p(,l,;p t) via the SPA involves only one evaluation of 
f)(pt), which is typically the most time-consuming step 
in the calculations as it involves a Fourier transform 
operation. The task of solving (2) and determining the 
appropriate 20 (see Appendix 2) both occur inside the 
f) (pt)-evaluation loop (see Fig. 2). An efficient iterative 
solution scheme for solving (2) is given in Appendix 1 
and in some respects resembles iterating (2) from left to 
right, whereas all other iterative approaches to the 
solution of (I.14) appear to proceed from right to left 
(see e.g., Gull & DanieU, 1978; Willingale, 1981; 
Collins, 1982). This observation probably explains the 
very slow convergence found when seeking to solve 
(I.14) by right to left iteration and suggests that 
extension of the SPA to small clusters of pixels may 
also prove worthwhile and provide a local hierarchy of 
equations for solving the structure-determination prob- 
lem in p space. 
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Fig. 1. Plot of the solution/50]) of the single pixel equation (3) in 
reduced form (see Appendix 1) as a function of t~, showing two 
branches for -e-~ _< b < 0. 
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It should also be noted that one cannot guarantee 
that the SPA will lead to a full self-consistent solution, 
p(~,). Clearly, the closer pt is to p0,) the better the 
method should work. In practice we have found no 
convergence difficulties when only the first constraint is 
present, even when pt starts from the flat map. On the 
other hand, when constraint (2) is included, conver- 
gence of p(") (A; p t )  t o  p(2) can be quite slow. 

3. Enforced convexity 

If only convex constraints are considered, then p(k) is 
unique (see Wernecke, 1977, and also I). However, if 
non-convex constraints are considered [e.g., constraint 
(2) in Table 1 of I l, then the solution for p(A) need not 
be unique and, in practical terms, one would like to 
have a p t  sufficiently close to the correct solution so as 
to help avoid jumping into a false maximum in Q(p). 
This matter was partly discussed in I where one 
approach to the problem which was suggested was to 
solve first for p(A) for all convex constraints and then 
slowly introduce non-convex constraints. A further aid 
to avoiding false maxima and the possibility of 
obtaining trial solutions oscillating between different 
false maxima, is somehow to enforce the constraint 
functions to be always convex. 

I re-eshmote I 
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Fig. 2. Flow chart for the iterative self-consistent solution of 
(I.14) subject to the constraints (l.ll) via the single pixel 
approximation (2). 

In the case of the results presented in Fig. 1 of I, this 
was done using the SPA and taking AJIPkl = 1 in the 
expression for f22dj, and corresponds to estimating f~d  j 
under the assumption that measured and model 
amplitudes are equal. This assumption is obviously 
very good when one is near the correct solution. If no 
assumption like this is made, then model Fourier 
coefficients, Pk, which have a small magnitude 
(especially common in the early stages of a refinement) 
can lead to very large contributions to f22dj, both 
positive and negative, which are clearly inimical to the 
attempted determination of p(A). 

4. The special case of  the first constraint with uniform 
errors and a complete set of  structure-factor data 

In this section we consider the special case where only 
constraint (1) of I is operating, and so corresponds 
essentially to the task of phase refinement for a 
partially known structure. To make matters even 
simpler, we in addition assume that: (i) all structure 
factors E k are approximately known and (ii) their 
errors are uniform (i.e. Ok, 1 = O" for all k). Then we may 
immediately write (using Table 1 of I and Appendix 1 
of I) 

1 
1 ~. (Pk -- Ek) exp{-2niJ'k/N} f ] . j ( p ) -  a2 NI 

N 1 
- ml a 2 ( p j -  ej), (5) 

where ej is the Fourier inverse of E k, so that f [ j ( p )  is 
nothing but a scaled difference density for the j th  pixel, 
between the trial structure, p, and an experimental 
structure, e (which need not be everywhere positive, 
although we assume it is normalized, i.e. E 0 -- 1). 
C lea r ly , f [ j (p )  here is a purely local property of thef lh 
pixel. 

Consider now the task of self-consistently solving the 
fundamental equations (I,14a) given (5), which corre- 
sponds to solving 

pj= exp {-~IPj + (~lej - 20)}, (6a) 

where 21 = ~,IN/N~a ~ and (6a) is clearly of exactly the 
same form as the SPE, (3), but with 

Uj= L; Vj= L -  ~,lej. (6b) 

(6a) may thus be solved for p(21) by the techniques 
outlined in Appendices 1 and 2. Notably, the only time 
a Fourier operation is involved is in the initial 
calculation of ej from E k, and this is required only once 
even if 21 is varied. Also, the evaluation off~[p(21)] 
may in fact be carried out in p space using Parseval's 
theorem, and so the correct value of 21 determined such 
that fl[p(2~)] = C 1, without involving calculation of a 
Fourier transform, viz. 
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1 1 
f l ( P ) -  2N----~ o "z Z PPk--Ek 12 

k 

N 1 
- 2 N  1 a2 Z ( p j -  eJ)2" (7) 

J 

By means of the assumptions above, we have been 
able to reduce the structure-refinement problem in the 
SG framework to a relatively simple numerical task, 
comparable in magnitude to that of the Fourier 
transformation operation itself. In practice, there are 
clearly going to be some difficulties in applying the 
simple approach described above. For example, the 
initial data set may be incomplete, in which case the 
problem may be overcome by assuming 

Ek = Pk, (8) 

for missing k values, where in practice one could take 
Pk : Ptk, with P~, an initial structure factor based on an 
initial structure pt. Obviously, the smaller the number 
of 'holes' in the data set the better the method should 
work. On other aspects of the structure refinement 
problem, we note that: 

(i) the method gives support to the local nature of the 
refinement problem in p space and to the SPA 
approach in general (see § 2), especially when con- 
straint (1) of I is the main operative constraint. It can 
easily be seen that the SPA approach outlined in § 2 
reduces to exactly the same values for Uj and Vj as (6b) 
above, and the present assumptions. Thus, the SPA 
approach should be particularly efficient under these 
conditions, when the data set for E k is nearly complete 
and when the errors are nearly uniform. 

(ii) at any time one may choose the number of 
evaluation points in p space, N, to be larger than the 
Shannon limit for the data and thereby seek to obtain 
[using (8) above] superresolution in the refinement of p. 
By the inverse process, one may correspondingly seek 
to carry out some degree of phase extension when 
Fourier transforming to k space. 

(iii) at the end of a refinement cycle yielding the MES 
p(21) s.t. f l(P) = C1, one may seek to improve E k by 
taking phases (and perhaps some amplitudes) from 
p(21) and then repeat the refinement of the structure 
using the new set of ej (see Collins, 1982). 

(iv) one may group a whole set of pixels together 
(say background density due to solvent in a protein 
crystal) and treat the whole set as one average pixel, by 
averaging over the ej's in the set and regarding the pj 
determined via (6a) as an average pj for the pixels in 
the set. 

(v) other forms of structure averaging, such as 
non-crystallographic averaging, may similarly be car- 
ried out without any need for Fourier transformation 
between pj and Pk" 

(vi) the present special case is obviously an ideal case 
for using as the first stage in a more detailed treatment 
of the structure-refinement problem. For example, after 
having established the maximum-entropy structure, 
p(2), appropriate for unit weights, one may then 
introduce a more subtle weighting scheme and continue 
refinement via the SPA (§ 2). 

(vii) another aspect which emerges very clearly from 
the present discussions is the conjugate nature of 21 and 
a 2. It is only the ratio of these two variables which 
enters the calculation (i.e. 21 ) and not their absolute 
values. Thus, letting 21 --, oe is mathematically 
equivalent to letting a 2 --, 0 (see also Varghese & 
Wilkins, 1983) and one is, in principle, able to treat 
the case of exact data (e l  Collins, 1982). 

(viii) for a given set of ej, the refinement off1 (p) via 
21 will certainly have a lowest possible value _> 0 [since 

fl(P) is a convex function, see § 4 of I] and may have a 
limiting value > C l _> 1, thus providing a natural limit 
to the degree of refinement possible with the given set of 
ej. 

(ix) the present approach readily extends to the case 
where prior probabilities, m j, are included in the entropy 
expression, viz. S = - Y  j pj l n ( p / m j )  (Jaynes, 1968). 

4.1 Application to macromoleeular structure refinement 

We are currently using the above special case of the 
SPE to help refine 2.9 A data from neuraminidase (unit 
cell 124 × 124 x 181A) and are able to obtain 
three-dimensional maximum-entropy structures, p(21), 
with 1.3 x 106 pixels in the asymmetric unit cell, in 
approximately 200 s of CPU time on a CYBER76 
(Varghese & Wilkins, 1983). The solutions to the SG 
problem thus obtained are exact to arbitrary numerical 
accuracy (e l  Collins, 1982) and involve only one 
Fourier transformation operation for a given set of E k. 
In practice, the above calculations gave normalization 
of p to better than 0.5% and involved two passes in 2 o 
(i.e. 100 s/pass). 

5. Conc lus ion  

The SPA can provide a simple and relatively trans- 
parent approach to the exact numerical solution of the 
statistical inversion problem for diffraction data, and 
has been found to be both instructive and practically 
useful. For certain special cases, the statistical geo- 
metric problem can be solved exactly within the SPE 
framework using only one Fourier transformation 
operation. Some results on a simple one-dimensional 
model structure have been obtained using the SPA 
(Wilkins, Varghese & Lehmann, 1983; Varghese & 
Wilkins, 1983). 

I am grateful to Drs J. Varghese, P. Colman, 
A. Head, N. Isaacs, C. H. J. Johnson, and A. McL. 
Mathieson and J. Skilling for helpful discussions. 
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APPENDIX 1 
Discussion of the transcendental equation 

Consider 

In(p) + up + v = 0 (A 1.1) 

which can be written in reduced form as 

/~ = exp{-fi/3}, (A 1.2) 
where 

/5 = p  exp{v}; and f i = u e x p { - v } .  (A1.3) 

Using simple algebra it can readily be shown (see Fig. 
1) that (A 1.3) has: 

(i) one solution if u > 0. 
(ii) two solutions if -exp  {-  1 } < u exp {-v } < 0. 
(iii) no solutions if u < -exp{v - 1 }. 

The coordinates of the critical point (fic,/?c) are 
(-e-l ,e).  

In practice, (A 1.1) can be solved for p by numerical 
iteration for p using Newton's method, viz. 

p(1) = [I + up (°)] exp{-up (°) - vt 

x[1 + u exp{-up (°) -  v}] -l. (A1.4) 

APPENDIX 2 
Determination of~, o 

In practice, we have found it adequate to determine 2 0 
in the SPE by successive iteration using Newton's 

method. If p(0,0) is the solution (not necessarily a 
probability distribution) to (A 1.1) obtained when 20 = 
2(0 °), then the improved estimate for 20 is given by 

2(01)=2(00)+I--1 +~j exp{--U)°)p)°'o)--V)°)} 1 

7 ], x exp{ ~o) ~o,o) irT~o) o,oq , -U) p) - VJ°) } / [1  + - j  pJ 

( A 2 . 1 )  

where UJ °) and VJ °) are evaluated in the trial prob- 
ability distribution p(0). Notably, 20 may be refined 
without re-evaluation of U) °) and V) °), and hence does 
not involve heavy computation. 
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Abstract 1. Introduction 

A method for greatly improving the efficiency of 
numerical procedures for solving the fundamental 
equations of the statistical geometric method [Wilkins, 
Varghese & Lehmann (1983). Acta Cryst. A39, 47-60] 
is presented. The method involves optimizing the step 
length in a one-dimensional search based on two trial 
solutions. For constraint functions, fr, which have 
derivatives f~d = Ofr/c~pj, which are linear in p, it is 
shown that the one-dimensional search does not involve 
any additional Fourier transforms (i.e. lengthy 
computations). 
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In order to make the statistical geometric (SG) method 
outlined in I (Wilkins, Varghese & Lehmann, 1983) a 
practical tool for the structure determination and 
refinement of biological macromolecules, it is essential 
that highly efficient methods for solving the fundamen- 
tal equations (1.14) (see also Gull & Daniell, 1978) be 
developed. Simple iteration of these equations (see Gull 
& Daniell, 1978) is found to converge only weakly (in 
Borel sum) and slowly. In the second paper of this 
series (Wilkins, 1983, hereafter termed II), we outlined 
some improved methods of solution of the SG problem 
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